
DeeP rL AT THE edge of the
statistical Precipice
NeurIPS 2021 (Oral)

agarwl.github.io/rliable

https://agarwl.github.io/rliable

TL;DR

P 2

Atari 2600 gamesThis work calls for a change in how we evaluate performance on
reinforcement learning benchmarks, for which we present more
reliable protocols, easily applicable with *even a handful of
runs*, to prevent unreliable results from stagnating the field.

Few extra lines of code for reliable evaluation:
github.com/google-research/rliable

https://github.com/google-research/rliable

Assessing Progress in Deep RL

P 3

Procgen Atari 2600 games

DM Control

Evaluate aggregate performance on a

suite of tasks.

Point estimates are prevalent.

Procgen Atari 2600 games

Bellemare et al., 2017

Offline RL (ICML’20)

Agarwal et al., 2020

Distributional RL (ICML’17)

Castro et al., 2021

MiCo State Abstraction
(NeurIPS’21)

Self-predictive representations
(ICLR’21)

Schwarzer et al., 2021

Point estimates are prevalent.

Procgen Atari 2600 games

Bellemare et al., 2017

Offline RL (ICML’20)

Agarwal et al., 2020

Distributional RL (ICML’17)

Castro et al., 2021

MiCo State Abstraction (NeurIPS’21)

Self-predictive representations
(ICLR’21)

Schwarzer et al., 2021

Ignores statistical uncertainty in results.

Statistical uncertainty exacerbated by
small number of runs in Deep RL

So, what could go wrong with ignoring
statistical uncertainty?

Case Study: Atari 100k benchmark

● Evaluate performance after 100k training steps (~ 2-3 hrs of gameplay)
○ Aggregate results on 26 Atari games

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., ... & Michalewski, H. (2019). Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374.

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2

Case Study: Atari 100k benchmark

● Evaluate performance when trained for 100k interactions (~
2-3 hrs of gameplay)

○ Aggregate results on 26 Atari games

● Comparison using Median Human Normalized Scores

○ Typically 3-5 runs per game

○

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., ... & Michalewski, H. (2019). Model-based
reinforcement learning for atari. arXiv preprint arXiv:1903.00374.

Score on game 1 on run `n`

Case Study: Experimental Setup

1. van Hasselt, Hado, Matteo Hessel, and John Aslanides. "When to use parametric models in reinforcement learning?." NeurIPS (2019).
2. Kielak, Kacper. "Do recent advancements in model-based deep reinforcement learning really improve data efficiency?." arXiv preprint arXiv:2003.10181 (2020).
3. Kostrikov, Ilya, Denis Yarats, and Rob Fergus. "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels." ICLR (2021).
4. Srinivas, Aravind, Michael Laskin, and Pieter Abbeel. "CURL: Contrastive unsupervised representations for reinforcement learning." ICML (2020).
5. Schwarzer, Max, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bachman. "Data-efficient reinforcement learning with momentum predictive representations."

ICLR (2021).

● Evaluate 100 independent runs for 5 algorithms:
○ DER, OTR, DrQ, CURL, and SPR

● We have 26 games × 100 scores/game per algorithm.
○ Subsample scores with replacement to 3–100 runs.

What if I report performance using a
different set of runs?

Median scores are substantially biased!

How many runs for negligible uncertainty?

Even 30-50 runs may
not suffice for certain
comparisons.

Changes in evaluation protocols
invalidates comparisons to prior work.

Also *see*: Mauro Birattari and Marco Dorigo. How to assess and report the performance of a stochastic algorithm on a benchmark
problem: mean or best result on a number of runs? Optimization letters, 2007.

How to reliably evaluate
performance?

How to reliably evaluate performance?

Just Fix Random Seeds? Not a solution.
● Why prefer one set of seeds over another?
● Often can’t fix randomness in practice (different

hardware, non-determinism in GPUs)

Evaluate More Runs? Not feasible.
● 5 runs on 50 Atari games for 200M frames takes 1000+

GPU days.
● More complex RL benchmarks -- quite expensive to

evaluate even a few runs.

How to reliably evaluate performance?

How to reliably evaluate performance
with a handful of runs?

Is statistical significance testing the solution? Not really.
● Dichotomous (significant vs not significant)

● Widely misinterpreted.

● Often hide effect sizes (such as size of improvement over baseline).

Fun fact: Main statistics journal in USA bans thresholding p-values!

[1] Amrhein, Valentin, Sander Greenland, and Blake McShane. "Scientists rise up against statistical significance." Nature (2019) .
[2] Wasserstein, Ronald L., Allen L. Schirm, and Nicole A. Lazar. "Moving to a world beyond “p< 0.05”." The American Statistician (2019).

How to reliably evaluate performance
with a handful of runs?

19

Desiderata Current evaluation approach Our recommendation

Uncertainty in
aggregate performance

Point estimates Interval estimates

Variability in performance
across tasks and runs

Tables with task mean scores Performance Profiles

Aggregate metrics
for overall performance

Mean / Median
Interquartile Mean (IQM),
Prob. of Improvement

Interval Estimates:
Stratified Bootstrap Confidence Intervals

● “If we repeat the experiment with different runs, what aggregate
score are we expected to get?”

Interval Estimates:
Stratified Bootstrap Confidence Intervals

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2

Stratified Bootstrap Confidence Intervals:
How does it work?

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2

Interval Estimates:
Stratified Bootstrap Confidence Intervals

Task 1 Task 2 Task M

….

Single task with N runs M tasks with N runs

Task 1

● Only N random samples
● Bootstrapping CIs don’t

make sense with N ≤ 5!

● N*M random samples
● Bootstrapping results in

reasonably accurate CIs with
N ≥ 5!

Aggregate metrics hide task variability!

Source: Same Stats, Different Graphs.
https://www.autodesk.com/research/pu
blications/same-stats-different-graphs.

Performance Variability:
Tables with per-task scores?

● Overwhelming beyond a few tasks
● Standard deviations frequently omitted
● Mean scores present incomplete picture

for non-gaussian distributions!

A better approach: Performance profiles with CIs

● Typically used for comparing solve times of different
optimization methods.

● Robust to outlier runs/tasks.
● Robust to small changes in performance across all tasks.

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical programming.

Performance Profiles for a bird's-eye view!

Median (where curves
intersect y=0.5)

Mean = Area under
the curve

One curve above another:
Stochastic dominance

What if one algorithm doesn't dominate another?

Need aggregate metrics for reporting
quantitatively improvements.

Existing Metrics are Deficient!

● Median: High variability and not robust -- score of 0 on half
of the tasks does not change it.

● Mean: Easily dominated by a few outlier tasks.

Need better aggregate metrics that are robust, not dominated
by outliers and have small uncertainty.

Robust and Efficient Aggregate Metrics

● Median → Interquartile Mean (IQM)
○ Averages middle 50% scores across all

runs and tasks
○ Best of both worlds: Median, Mean:

50%, 0% trimmed mean

● Mean → Optimality Gap
○ How far an algorithm is from optimal

performance

Visual introduction to IQM

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2

IQM leads to smaller confidence intervals

P 32

Am I better than the baseline?

P 33

We can compute probability of improvement of algorithm X over Y.

Performance on task X.

Probability of Improvement

P 34
Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2

P 35

Re-evaluating Evaluation

Re-evaluating algorithms on ALE

36

Median Scores IQM Scores

ALE: Interval estimates

Performance Ranking changes depending on the metric!

ALE: Performance Profiles

P 38

Re-evaluating algorithms on DM Control

P 39

1 - Optimality Gap

Procgen: Average Probability of Improvement

40

Takeaways

● Use interval estimates as opposed to point estimates.

● More is more: Performance profiles for qualitative
summarization.

● Use better aggregate performance measures such as
interquartile mean (IQM) and prob. of improvement.

● Provide individual runs for better statistical comparisons.

See bit.ly/statistical_precipice_colab for jumpstart. Thank you!

http://bit.ly/statistical_precipice_colab

Just as a rock-climber can skirt the edge
of the steepest precipices, it seems
likely that ongoing progress in RL will

require greater experimental discipline.

See agarwl.github.io/rliable.

https://agarwl.github.io/rliable

