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TL;DR
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Atari 2600 gamesThis work calls for a change in how we evaluate performance on 
reinforcement learning benchmarks, for which we present more 
reliable protocols, easily applicable with *even a handful of 
runs*, to prevent unreliable results from stagnating the field.

Few extra lines of code for reliable evaluation:
github.com/google-research/rliable

https://github.com/google-research/rliable


Assessing Progress in Deep RL
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Procgen Atari 2600 games

DM Control

Evaluate aggregate performance on a 

suite of tasks.



Point estimates are prevalent.
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Ignores statistical uncertainty in results.



Statistical uncertainty exacerbated by 
small number of runs in Deep RL



So, what could go wrong with ignoring 
statistical uncertainty?



Case Study: Atari 100k benchmark

● Evaluate performance after 100k training steps (~ 2-3 hrs of gameplay) 
○ Aggregate results on 26 Atari games

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., ... & Michalewski, H. (2019). Model-based 
reinforcement learning for atari. arXiv preprint arXiv:1903.00374.

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2


Case Study: Atari 100k benchmark

● Evaluate performance when trained for 100k interactions (~ 
2-3 hrs of gameplay) 

○ Aggregate results on 26 Atari games

● Comparison using Median Human Normalized Scores

○ Typically 3-5 runs per game

○

Kaiser, L., Babaeizadeh, M., Milos, P., Osinski, B., Campbell, R. H., Czechowski, K., ... & Michalewski, H. (2019). Model-based 
reinforcement learning for atari. arXiv preprint arXiv:1903.00374.

Score on game 1 on run `n`



Case Study: Experimental Setup

1. van Hasselt, Hado, Matteo Hessel, and John Aslanides. "When to use parametric models in reinforcement learning?." NeurIPS (2019).
2. Kielak, Kacper. "Do recent advancements in model-based deep reinforcement learning really improve data efficiency?." arXiv preprint arXiv:2003.10181 (2020).
3. Kostrikov, Ilya, Denis Yarats, and Rob Fergus. "Image augmentation is all you need: Regularizing deep reinforcement learning from pixels."  ICLR (2021).
4. Srinivas, Aravind, Michael Laskin, and Pieter Abbeel. "CURL: Contrastive unsupervised representations for reinforcement learning." ICML (2020).
5. Schwarzer, Max, Ankesh Anand, Rishab Goel, R. Devon Hjelm, Aaron Courville, and Philip Bachman. "Data-efficient reinforcement learning with momentum predictive representations."  

ICLR (2021).

● Evaluate 100 independent runs for 5 algorithms: 
○ DER, OTR, DrQ, CURL, and SPR

● We have 26 games × 100 scores/game per algorithm.
○ Subsample scores with replacement to 3–100 runs.



What if I report performance using a 
different set of runs?



Median scores are substantially biased! 



How many runs for negligible uncertainty?

Even 30-50 runs may 
not suffice for certain 
comparisons.



Changes in evaluation protocols 
invalidates comparisons to prior work.

Also *see*: Mauro Birattari and Marco Dorigo. How to assess and report the performance of a stochastic algorithm on a benchmark 
problem: mean or best result on a number of runs? Optimization letters, 2007.



How to reliably evaluate 
performance?



How to reliably evaluate performance?

Just Fix Random Seeds? Not a solution.
● Why prefer one set of seeds over another?
● Often can’t fix randomness in practice (different 

hardware, non-determinism in GPUs)



Evaluate More Runs? Not feasible.
● 5 runs on 50 Atari games for 200M frames takes 1000+ 

GPU days.
● More complex RL benchmarks -- quite expensive to 

evaluate even a few runs.

How to reliably evaluate performance?



How to reliably evaluate performance 
*with a handful of runs*?

Is statistical significance testing the solution? Not really.
● Dichotomous (significant vs not significant)

● Widely misinterpreted.

● Often hide effect sizes (such as size of improvement over baseline).

Fun fact: Main statistics journal in USA bans thresholding p-values!

[1] Amrhein, Valentin, Sander Greenland, and Blake McShane. "Scientists rise up against statistical significance." Nature (2019) .
[2] Wasserstein, Ronald L., Allen L. Schirm, and Nicole A. Lazar. "Moving to a world beyond “p< 0.05”." The American Statistician (2019).



How to reliably evaluate performance 
*with a handful of runs*?

19

Desiderata Current evaluation approach Our recommendation

Uncertainty in 
aggregate performance

Point estimates Interval estimates

Variability in performance
across tasks and runs

Tables with task mean scores Performance Profiles 

Aggregate metrics 
for overall performance 

Mean  / Median
Interquartile Mean (IQM), 
Prob. of Improvement 



Interval Estimates: 
Stratified Bootstrap Confidence Intervals

● “If we repeat the experiment with different runs, what aggregate 
score are we expected to get?”



Interval Estimates: 
Stratified Bootstrap Confidence Intervals

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2


Stratified Bootstrap Confidence Intervals: 
How does it work?

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2


Interval Estimates: 
Stratified Bootstrap Confidence Intervals

Task 1 Task 2 Task M

….

Single task with N runs M tasks with N runs

Task 1

● Only N random samples
● Bootstrapping CIs don’t 

make sense with N ≤ 5!

● N*M random samples
● Bootstrapping results in 

reasonably accurate CIs with 
N ≥ 5!



Aggregate metrics hide task variability!

Source: Same Stats, Different Graphs. 
https://www.autodesk.com/research/pu
blications/same-stats-different-graphs.



Performance Variability: 
Tables with per-task scores?

● Overwhelming beyond a few tasks
● Standard deviations frequently omitted
● Mean scores present incomplete picture 

for non-gaussian distributions!



A better approach: Performance profiles with CIs

● Typically used for comparing solve times of different 
optimization methods.

● Robust to outlier runs/tasks.
● Robust to small changes in performance across all tasks.

Dolan, E. D., & Moré, J. J. (2002). Benchmarking optimization software with performance profiles. Mathematical programming.



Performance Profiles for a bird's-eye view! 

Median (where curves 
intersect y=0.5)

Mean = Area under 
the curve

One curve above another: 
Stochastic dominance



What if one algorithm doesn't dominate another?

Need aggregate metrics for reporting 
quantitatively improvements.



Existing Metrics are Deficient!

● Median: High variability and not robust --  score of 0 on half 
of the tasks does not change it.

● Mean: Easily dominated by a few outlier tasks.

Need better aggregate metrics that are robust, not dominated 
by outliers and have small uncertainty.



Robust and Efficient Aggregate Metrics

● Median → Interquartile Mean (IQM) 
○ Averages middle 50% scores across all 

runs and tasks
○ Best of both worlds: Median, Mean: 

50%, 0% trimmed mean

● Mean → Optimality Gap 
○ How far an algorithm is from optimal 

performance



Visual introduction to IQM

Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2


IQM leads to smaller confidence intervals
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Am I better than the baseline?

P 33

We can compute probability of improvement of algorithm X over Y.

Performance on task X.



Probability of Improvement

P 34
Source: A visual introduction to RLiable by Antonin Raffin

https://araffin.github.io/post/rliable/
https://twitter.com/araffin2
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Re-evaluating Evaluation



Re-evaluating algorithms on ALE
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Median Scores IQM Scores



ALE: Interval estimates

Performance Ranking changes depending on the metric!



ALE: Performance Profiles

P 38



Re-evaluating algorithms on DM Control
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1 - Optimality Gap



Procgen: Average Probability of Improvement

40



Takeaways

● Use interval estimates as opposed to point estimates.

● More is more: Performance profiles for qualitative 
summarization.

● Use better aggregate performance measures such as 
interquartile mean (IQM) and prob. of improvement.

● Provide individual runs for better statistical comparisons.

See bit.ly/statistical_precipice_colab for jumpstart. Thank you!

http://bit.ly/statistical_precipice_colab


Just as a rock-climber can skirt the edge 
of the steepest precipices, it seems 
likely that ongoing progress in RL will 

require greater experimental discipline.

See agarwl.github.io/rliable.

https://agarwl.github.io/rliable

