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Agents should  “do well” in 
environment(s) semantically 
similar to training environments.

Aspiration I

[Machado et al., JAIR 2018]

Slide adapted from Marlos C. Machado

https://docs.google.com/file/d/1JRg4MN9i8JQVssq1LydMGk7DEzQcBvoZ/preview


Train agents that can generalize from 
a “few” environments rather than 
hundreds or thousands of 
environments.

Aspiration II

[Cobbe et al., ICML 2019]

Generalization 
Performance 



Setup: Generalization in RL
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● Learn using finite tasks sampled from distribution D
● Evaluate performance on “unseen” tasks in D

Jumping Task from Pixels

Different obstacle positions (Train)

Unseen 
(Test)

Different 
floor heights 

(Train)



Adapted from supervised learning, e.g. :

Prior Work on Generalization
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1. Farebrother, Jesse, et al. Generalization and regularization in DQN. arXiv preprint arXiv:1810.00123, 2018
2. Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. Quantifying generalization in reinforcement learning. ICML, 2019
3. Igl, Maximilian, et al. "Generalization in reinforcement learning with selective noise injection and information bottleneck. NeurIPS, 2019

Regularization
(l2-reg., Dropout, 
Noise Injection)
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Data Augmentation 
(RandConv, RAD, DrQ ..)

Regularization
(l2-reg., Dropout, 
Noise Injection)

Agnostic to Sequential Structure in RL!

Domain 
Randomization



This work ...
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Learn representations that encode 
“behavioral similarity” across states!
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6 feet

Learn representations that encode 
“behavioral similarity” across states!
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“Similar” 
States



This work ...
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Learn representations that encode 
“behavioral similarity” across states!

“Similar” 
States

Actions in current states as well as 
future states are similar.



● Our metric builds on bisimulation metrics.

● Two states are bisimular if they have similar expected 
rewards and dynamics.

Defining Behavioral Similarity
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Ferns, Norm, Prakash Panangaden, and Doina Precup. "Metrics for Finite Markov Decision Processes." UAI. Vol. 4. 2004.



● D : Distribution over environments with action space A

● Environments MX ~ D, MY ~ D with state spaces X , Y

● MX → Optimal Policy π*
X  , Dynamics PX  , Rewards RX

● S = X  U .. U Y . Union of state spaces of environments in D

● Union MDP: State Space S, Dynamics P, Rewards R

● Pπ, Rπ: Dynamics and rewards induced by π

Notation
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π-Bisimulation Metric
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Reward Difference Long-term discounted 
future reward difference

[1] Castro, Pablo Samuel. "Scalable methods for computing state similarity in deterministic markov decision processes." AAAI, 2020.



π-Bisimulation Metric
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Wasserstein-1 distance 
under dπ

Next State 
Distributions

Minimal cost of transporting probability 
mass between 2 distributions under the 
base metric dπ

Pπ(. | x) Pπ(. | y)

dπ(x , y)



Problem #1
 Similar Behavior, Different Rewards
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Bisimilarity(x0, y0) > Bisimilarity(x0, y1)



Problem #2 
Different Behavior, Similar Rewards
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+1 reward at 
each step

Expected rewards are same for states 012



Policy Similarity Metric (PSM)

Replace

Policy Difference

Reward Difference



Policy Similarity Metric (PSM)
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Local Optimal 
Behavior Difference

Long-term Optimal 
Behavior Difference

How far 
into the 
future?



PSM (Deterministic Environments)
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One-step optimality 
difference

Two-step discounted optimality difference



PSM for generalization
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● Given d*, how well can we transfer optimal policy on MX to MY ?

● For each y in MY, pick state in  X closest to y based on PSM, i.e.,

Nearest 
Neighbor

Transfer 
Policy 



PSM for generalization
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Policy 



Representations that encode PSM
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● To achieve good generalization, we learn policy similarity 
embeddings (PSEs) that encode PSM 

● We adapt SimCLR1, a popular contrastive method for learning 
embeddings of image inputs.

1. Chen, Ting, et al. "A simple framework for contrastive learning of visual representations." ICML (2020).



Policy Similarity Embeddings (PSEs)
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Learn representations that put together states in which 
the agent’s long-term optimal behavior is similar.



A quick summary of SimCLR
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Maximize “positive pair” similarity

Minimize “negative pair” similarity

https://docs.google.com/file/d/1sfMOIgZGCvOVIbB898jcTtVVdiSbIERG/preview


Contrastive Metric Embeddings (CMEs)
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Nearest Neighbor

Maximize “positive pair” similarity

Minimize “negative pair” similarity



Contrastive Metric Embeddings (CMEs)
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Nearest Neighbor

Soft Similarity Score

Maximize “positive pair” similarity

Minimize “negative pair” similarity



Policy Similarity Embeddings (PSEs)
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Policy Similarity Embeddings = Policy Similarity 
Metric + CMEs 
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Jumping Task from Pixels: A Case Study

Combes, Remi Tachet des, Philip Bachman, and Harm van Seijen. "Learning Invariances for Policy Generalization." arXiv preprint 
arXiv:1809.02591 (2018).



Jumping Task from Pixels [des Combes et al, 2018]
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Jumping Task from Pixels [des Combes et al, 2018]
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Different obstacle positions (train)

Different 
floor 

heights 
(train)

Unseen 
(test)



Experiment Setup
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Each cell 
is a 

different 
jumping 

task.

“Wide” Grid

Training 
Task



Grid Configurations
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Generalization on Jumping Task
without Data Augmentation
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4. No learning. Oracle access = Impractical!

% of test environments solved (average over 100 seeds)



What about Data Augmentation?
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RandConv
A SOTA augmentation for generalization in RL

1. Lee, Kimin, et al. "Network Randomization: A Simple Technique for Generalization in Deep Reinforcement Learning." ICLR. 2019



Generalization with Data Augmentation
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% of test environments solved (average over 100 seeds)



Visualizing Similarity Metrics 
on Jumping Task
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What does the generalization looks like?
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Task Dependent Invariances: Jumping Task with Colors
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Jump over red Strike green

Color-dependent optimal policy.



Task Dependent Invariances: Jumping Task with Colors
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RandConv enforces color invariance.



Task Dependent Invariances: Jumping Task with Colors
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Jump over red Strike green

Color-dependent optimal policy.



Understanding gains from PSEs
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CMEs = Contrastive Metric Embeddings
PSEs = CMEs + Policy Similarity Metric

l2-embeddings (Zhang et al., 2020)
Minimize l2-distance b/w representations to match the metric d



Visualizing learned representations
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PSEs are robust to suboptimality!

P 45

Take optimal 
action with
probability 1 - ϵ. 



Ablations: Understanding gains from PSEs
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l2-embeddings (Zhang et al., 2020)
Minimize l2-distance b/w representations to match the metric d

Compare Embeddings



LQR with Spurious Correlations[Song et al, 2020] 
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High-Dimensional 
Spurious Distractors

Wd  is domain dependent.

Song, X., Jiang, Y., Du, Y., & Neyshabur, B. (2019). Observational overfitting in reinforcement learning. ICLR (2020).



LQR with Spurious Correlations
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*IPO = Invariant Risk Minimization + PPO



Distracting DM Control

P 49

Train Environments

Test Environments



Distracting DM Control
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PSEs outperform SOTA data augmentation DrQ agent!
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1. Niv, Yael. "Learning task-state representations." Nature neuroscience 22.10 (2019): 1544-1553.
2. Gershman, Samuel J. "The successor representation: its computational logic and neural substrates." Journal of 

Neuroscience 38.33 (2018): 7193-7200.

● Human RL literature typically thinks of 

state spaces structured around rewards 

rather than actions.

● This work shows that we expect policies 

to transfer rather than reward!

● Should states be grouped by invariance 

to rewards or actions?



agarwl.github.io/pse for details!
Thank You! 
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http://agarwl.github.io/pse

