CONTRASTIVE BEHAVIORAL SIMILARITY Embeddings for Generalization In Reinforcement Learning

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, Marc G. Bellemare

Google Research

Aspiration I

Agents should "do well" in environment(s) *semantically* similar to training environments. [Machado et al., JAIR 2018]

Aspiration II

Train agents that can generalize from a "few" environments rather than hundreds or thousands of environments.

Setup: Generalization in RL

- Learn using finite tasks sampled from distribution ${\mathcal D}$
- Evaluate performance on "unseen" tasks in \mathcal{D}

Adapted from supervised learning, e.g. :

^{1.} Farebrother, Jesse, et al. Generalization and regularization in DQN. arXiv preprint arXiv:1810.00123, 2018

- 2. Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. Quantifying generalization in reinforcement learning. ICML, 2019
- 3. Igl, Maximilian, et al. "Generalization in reinforcement learning with selective noise injection and information bottleneck. NeurIPS, 2019

Adapted from supervised learning, e.g. :

Regularization (**l**2-reg., Dropout, Noise Injection)

1. Farebrother, Jesse, et al. Generalization and regularization in DQN. arXiv preprint arXiv:1810.00123, 2018

- 2. Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. Quantifying generalization in reinforcement learning. ICML, 2019
- 3. Igl, Maximilian, et al. "Generalization in reinforcement learning with selective noise injection and information bottleneck. NeurIPS, 2019
- 4. Tobin, Josh, et al. "Domain randomization for transferring deep neural networks from simulation to the real world." IROS, 2017

Adapted from supervised learning, e.g. :

Regularization (l2-reg., Dropout, Noise Injection)

Domain Randomization

Data Augmentation (RandConv, RAD, DrQ ..)

- 1. Farebrother, Jesse, et al. Generalization and regularization in DQN. arXiv preprint arXiv:1810.00123, 2018
- 2. Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. Quantifying generalization in reinforcement learning. ICML, 2019
- 3. Igl, Maximilian, et al. "Generalization in reinforcement learning with selective noise injection and information bottleneck. NeurIPS, 2019
- 4. Tobin, Josh, et al. "Domain randomization for transferring deep neural networks from simulation to the real world." IROS, 2017
- 5. Lee, Kimin, et al. "Network Randomization: A Simple Technique for Generalization in Deep Reinforcement Learning." ICLR. 2019
- 6. Kostrikov, Ilya, et al. Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020
- 7. Laskin, Mischa, et al.. Reinforcement Learning with Augmented Data. NeurIPS, 2020

Adapted from supervised learning, e.g. :

- 1. Farebrother, Jesse, et al. Generalization and regularization in DQN. arXiv preprint arXiv:1810.00123, 2018
- 2. Cobbe, K., Klimov, O., Hesse, C., Kim, T., & Schulman, J. Quantifying generalization in reinforcement learning. ICML, 2019
- 3. Igl, Maximilian, et al. "Generalization in reinforcement learning with selective noise injection and information bottleneck. NeurIPS, 2019
- 4. Tobin, Josh, et al. "Domain randomization for transferring deep neural networks from simulation to the real world." IROS, 2017
- 5. Lee, Kimin, et al. "Network Randomization: A Simple Technique for Generalization in Deep Reinforcement Learning." ICLR. 2019
- 6. Kostrikov, Ilya, et al. Image augmentation is all you need: Regularizing deep reinforcement learning from pixels. arXiv preprint arXiv:2004.13649, 2020
- 7. Laskin, Mischa, et al.. Reinforcement Learning with Augmented Data. NeurIPS, 2020

Learn representations that encode **"behavioral similarity**" across states!

Learn representations that encode **"behavioral similarity**" across states!

Learn representations that encode **"behavioral similarity**" across states!

Learn representations that encode "behavioral similarity" across states!

Actions in current states as well as future states are similar.

Defining Behavioral Similarity

- Our metric builds on **bisimulation** metrics.
- Two states are bisimular if they have **similar expected rewards** and **dynamics**.

Notation

- \mathcal{D} : Distribution over environments with action space **A**
- Environments $\mathbf{M}_{\mathcal{X}} \sim \mathcal{D}$, $\mathbf{M}_{\mathcal{Y}} \sim \mathcal{D}$ with state spaces \mathcal{X} , \mathcal{Y}
- $M_{\chi} \rightarrow \text{Optimal Policy } \pi^*_{\chi}$, Dynamics P_{χ} , Rewards R_{χ}
- $\mathcal{S} = \mathcal{X} \cup .. \cup \mathcal{Y}$. Union of state spaces of environments in \mathcal{D}
- Union MDP: State Space S, Dynamics P, Rewards R
- P^{π} , R^{π} : Dynamics and rewards induced by π

π -Bisimulation Metric

$$d_{\pi}(x,y) = |R^{\pi}(x) - R^{\pi}(y)| + \gamma \mathcal{W}_{1}(d_{\pi})(P^{\pi}(\cdot \mid x), P^{\pi}(\cdot \mid y))$$
Reward Difference
Long-term discounted future reward difference

[1] Castro, Pablo Samuel. "Scalable methods for computing state similarity in deterministic markov decision processes." AAAI, 2020.

π -Bisimulation Metric

$d_{\pi}(x,y) = |R^{\pi}(x) - R^{\pi}(y)| + \gamma \mathcal{W}_{1}(d_{\pi})(P^{\pi}(\cdot | x), P^{\pi}(\cdot | y))$

base metric d_

Problem #1 Similar Behavior, Different Rewards

Bisimilarity(x₀, y₀) > Bisimilarity(x₀, y₁)

Problem #2 Different Behavior, Similar Rewards

+1 reward at each step

Expected rewards are same for states 2 1 0

Policy Similarity Metric (PSM)

$$d_{\pi}(x,y) = \underbrace{|R^{\pi}(x) - R^{\pi}(y)|}_{\text{Reward Difference}} + \gamma \mathcal{W}_{1}(d_{\pi})(P^{\pi}(\cdot \mid x), P^{\pi}(\cdot \mid y))$$
$$\overset{\text{Replace}}{=} d^{*}(x,y) = \underbrace{\text{DIST}(\pi^{*}(x), \pi^{*}(y))}_{\text{Policy Difference}} + \gamma \mathcal{W}_{1}(d^{*})(P^{\pi^{*}}(\cdot \mid x), P^{\pi^{*}}(\cdot \mid y))$$

Policy Similarity Metric (PSM)

$$d^{*}(x,y) = \text{DIST}(\pi^{*}(x),\pi^{*}(y)) + \gamma \mathcal{W}_{1}(d^{*})(P^{\pi^{*}}(\cdot \mid x),P^{\pi^{*}}(\cdot \mid y))$$

$$\textbf{Local Optimal Behavior Difference} \qquad \textbf{Long-term Optimal Behavior Difference}$$

$$\textbf{How far into the future?}$$

PSM (Deterministic Environments)

 $d^{*}(x, y) = \text{DIST}(\pi^{*}(x), \pi^{*}(y)) + \gamma d^{*}(x', y')$

 $= \operatorname{DIST}(\pi^*(x), \pi^*(y)) + \gamma \operatorname{DIST}(\pi^*(x'), \pi^*(y')) + \gamma^2 d^*(x'', y'')$ One-step optimality difference

Two-step discounted optimality difference

PSM for generalization

- Given d*, how well can we transfer optimal policy on M_{χ} to M_{χ} ?
- For each y in $M_{\mathcal{Y}}$, pick state in \mathcal{X} closest to y based on PSM, i.e., $\tilde{\pi}(y) = \pi^*(\tilde{x}_y)$ where $\tilde{x}_y = \arg\min_{x \in \mathcal{X}} d^*(x, y)$ Transfer Policy Nearest Neighbor

PSM for generalization

- Given d*, how well can we transfer optimal policy on M_{χ} to M_{χ} ?
- For each y in M_y , pick state in \mathcal{X} closest to y based on PSM, i.e.,

$$\begin{split} \tilde{\pi}(y) &= \pi^*(\tilde{x}_y) \text{ where } \tilde{x}_y = \arg\min_{x \in \mathcal{X}} d^*(x,y) \\ \hline \\ \text{Transfer} \\ \text{Policy} \\ \end{split}$$

Theorem 1. [Bound on policy transfer] For any $y \in \mathcal{Y}$, let $Y_y^t \sim P^{\tilde{\pi}}(\cdot | Y_y^{t-1})$ define the sequence of random states encountered starting in $Y_y^0 = y$ and following policy $\tilde{\pi}$. We have:

$$\mathbb{E}_{Y_y^t}\left[\sum_{t\geq 0}\gamma^t TV\left(\tilde{\pi}(Y_y^t), \pi^*(Y_y^t)\right)\right] \leq \frac{1+\gamma}{1-\gamma}d^*(\tilde{x}_y, y) \ .$$

Representations that encode PSM

- To achieve good generalization, we learn policy similarity embeddings (PSEs) that encode PSM
- We adapt **SimCLR**¹, a popular contrastive method for learning embeddings of image inputs.

Policy Similarity Embeddings (PSEs)

Learn representations that put together states in which the agent's long-term optimal behavior is similar.

A quick summary of SimCLR

$$\begin{aligned} & \text{Contrastive Metric Embeddings (CMEs)} \\ & \text{Nearest Neighbor} \\ & \\ & \tilde{x}_y = \arg\min_{x\in\mathcal{X}} d^*(x,y) \\ & \\ & \ell_\theta(\tilde{x}_y,y;\mathcal{X}') = -\log\frac{\Gamma(\tilde{x}_y,y)\exp(\lambda s_\theta(\tilde{x}_y,y)) + \sum_{x'\in\mathcal{X}'\setminus\{\tilde{x}_y\}}(1-\Gamma(x',y))\exp(\lambda s_\theta(x',y))}{\Gamma(\tilde{x}_y,y)\exp(\lambda s_\theta(\tilde{x}_y,y)) + \sum_{x'\in\mathcal{X}'\setminus\{\tilde{x}_y\}}(1-\Gamma(x',y))\exp(\lambda s_\theta(x',y))} \end{aligned}$$

Minimize "negative pair" similarity

$$\begin{aligned} & \underset{\ell_{\theta}(\tilde{x}_{y}, y; \mathcal{X}') = -\log \underbrace{\Gamma(\tilde{x}_{y}, y) \exp(\lambda s_{\theta}(\tilde{x}_{y}, y)) + \sum_{x' \in \mathcal{X}' \setminus \{\tilde{x}_{y}\}} (1 - \Gamma(x', y)) \exp(\lambda s_{\theta}(x', y))}{\Gamma(x, y) \exp(\lambda s_{\theta}(\tilde{x}_{y}, y)) + \sum_{x' \in \mathcal{X}' \setminus \{\tilde{x}_{y}\}} (1 - \Gamma(x', y)) \exp(\lambda s_{\theta}(x', y))} \\ & \underset{\Gamma(x, y) = \exp(-d(x, y)/\beta)}{\Gamma(x, y) \exp(-d(x, y)/\beta)} \end{aligned}$$

Policy Similarity Embeddings (PSEs)

Policy Similarity Embeddings = Policy Similarity Metric + CMEs

Jumping Task from Pixels: A Case Study

Combes, Remi Tachet des, Philip Bachman, and Harm van Seijen. "Learning Invariances for Policy Generalization." arXiv preprint arXiv:1809.02591 (2018).

Jumping Task from Pixels [des Combes et al, 2018]

Figure G.1: Optimal trajectories on the jumping tasks for two different environments. Note that the optimal trajectory is a sequence of *right* actions, followed by a single *jump* at a certain distance from the obstacle, followed by *right* actions.

Jumping Task from Pixels [des Combes et al, 2018]

Experiment Setup

Grid Configurations

(a) Jumping task

(c) "Narrow" grid

(d) Random grid

Generalization on Jumping Task without Data Augmentation

% of test environments solved (average over 100 seeds)

Data	Method	Grid Configuration (%)		
Augmentation		"Wide"	"Narrow"	Random
×	Dropout and ℓ_2 reg. Bisimulation Transfer ⁴ PSEs	17.8 (2.2) 17.9 (0.0) 33.6 (10.0)	10.2 (4.6) 17.9 (0.0) 9.3 (5.3)	9.3 (5.4) 30.9 (4.2) 37.7 (10.4)

4. No learning. Oracle access = Impractical!

What about Data Augmentation?

RandConv A SOTA augmentation for generalization in RL

Google Research Generalization with Data Augmentation

% of test environments solved (average over 100 seeds)

Data	. Method	Grid Configuration (%)		
Augment	ation	"Wide"	"Narrow"	Random
1	RandConv RandConv + Bisimulation RandConv + PSEs	50.7 (24.2) 41.4 (17.6) 87.0 (10.1)	33.7 (11.8) 17.4 (6.7) 52.4 (5.8)	71.3 (15.6) 33.4 (15.6) 83.4 (10.1)

Visualizing Similarity Metrics on Jumping Task

What does the generalization looks like?

(a) Jumping task

(c) "Narrow" grid

(d) Random grid

Google Research Task Dependent Invariances: Jumping Task with Colors

Color-dependent optimal policy.

Google Research Task Dependent Invariances: Jumping Task with Colors

RandConv enforces color invariance.

Task Dependent Invariances: Jumping Task with Colors

Color-dependent optimal policy.

Understanding gains from PSEs

CMEs = Contrastive Metric Embeddings **PSEs** = CMEs + Policy Similarity Metric

Metric / Embedding	ℓ_2 -embeddings	CMEs
π^* -bisimulation	41.4 (17.6)	23.1 (7.6)
PSM	17.5 (8.4)	87.0 (10.1)

*l*2-embeddings (Zhang et al., 2020) Minimize I2-distance b/w representations to match the metric d

Visualizing learned representations

PSEs are robust to suboptimality!

Take optimal action with probability 1 - ε.

Ablations: Understanding gains from PSEs

Compare Embeddings

Metric / Embedding	ℓ_2 -embeddings	CMEs
π^* -bisimulation	5.1 (10.0)	23.1 (7.6)
PSM	17.5 (8.4)	87.0 (10.1)

*l*2-embeddings (Zhang et al., 2020)

Minimize I2-distance b/w representations to match the metric d

LQR with Spurious Correlations[Song et al, 2020]

$$\begin{array}{ll} \text{minimize} & E_{s_0 \sim \mathcal{D}} \left[\frac{1}{2} \sum_{t=0}^{\infty} s_t^T Q s_t + a_t^T R a_t \right], \\ \text{subject to} & s_{t+1} = A s_t + B a_t, o_t = \begin{bmatrix} 0.1 \ W_c \\ W_d \end{bmatrix} s_t, a_t = K o_t, \end{array}$$

W_d is domain dependent.

Song, X., Jiang, Y., Du, Y., & Neyshabur, B. (2019). Observational overfitting in reinforcement learning. ICLR (2020).

LQR with Spurious Correlations

*IPO = Invariant Risk Minimization + PPO

Distracting DM Control

Train Environments

Test Environments

Distracting DM Control

PSEs outperform SOTA data augmentation DrQ agent!

- Human RL literature typically thinks of state spaces structured around rewards rather than actions.
- This work shows that we expect policies to transfer rather than reward!

- Should states be grouped by invariance to rewards or actions?
 - 1. Niv, Yael. "Learning task-state representations." *Nature neuroscience* 22.10 (2019): 1544-1553.
 - 2. Gershman, Samuel J. "The successor representation: its computational logic and neural substrates." *Journal of Neuroscience* 38.33 (2018): 7193-7200.

agarwl.github.io/pse for details! Thank You!