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The success of RL algorithms hinges on the availability of > Mode-covering exploration to collect a diverse set of
high-quality and dense reward feedback. Meta Reward Auxiliary Reward successful trajectories in a replay buffer.
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How can we broaden the applicability of RL algorithms to real Jidden
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Given the input text instructions, the blindfolded agent (@) Environment T
performs a sequence of actions, and only receives a reward . y
of +1 if it reaches the goal (%). > Spurious trajectories are detrimental to generalization. § R
> Train the policy mrg to maximize the auxiliary rewards R, Results
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Rank Nation Gold Silver Bronze Total \ / | MAPOX | 74.2(%0.4)  43.3(+0.4)
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| | | Question: Who was the first oldest living president?
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